
Interoperable Metadata Semantics with Meta-Metadata:
A Use Case Integrating Search Engines

Yin Qu, Andruid Kerne, Andrew M. Webb and Aaron Herstein
Interface Ecology Lab, Texas A&M University

College Station, Texas
{yin, andruid, andrew, aaron}@ecologylab.net

ABSTRACT
A use case involving integrating results from search engines
illustrates how the meta-metadata language facilitates in-
teroperable metadata semantics. Formal semantics can be
hard to obtain directly. For example, search engines may
only present results through web pages; even if they do pro-
vide web services, they don’t provide them according to a
mutually interoperable standard.

We show how to use the open source meta-metadata lan-
guage to define a common base class for search results, and
how to extend the base class to create polymorphic variants
that include engine-specific fields. We develop wrappers to
extract data from HTML search results from engines in-
cluding Google, Bing, Delicious, and Slashdot. We write a
short meta-search program for integrating the search results,
reranking them, and providing formatted HTML output.
This provides an extensible formal and functional semantics
for search. Meta-metadata also directly enables represent-
ing the same integrated search results as XML or JSON.
This research can profoundly transform the derivation and
representation of interoperable metadata semantics from a
multitude of heterogeneous wild web sources.

Categories and Subject Descriptors
H.1.m [Information Systems: Models and Principles]

General Terms
Design, Documentation, Human Factors, Management

1. INTRODUCTION
We use the meta-metadata language and architecture to

integrate results from search engines. Metadata can be em-
ployed to describe the numerous documents published online
by businesses, organizations, and individuals. A metadata

schema describes the vocabulary and structure used to rep-
resent and communicate a type of metadata. Meta-metadata

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’11, September 19–22, 2011, Mountain View, California, USA.
Copyright 2011 ACM 978-1-4503-0863-2/11/09 ...$10.00.

is a language for describing schemas, wrappers that map in-
formation sources to schemas, and more. We define meta-

data semantics as the conjunction between a document and
its metadata, including content, descriptions, citations, and
afforded operations. Interoperable metadata semantics are
obtained from multiple sources, translated into consistent
representations, and then processed independently of the
initial sources. Interoperability can be impaired by the fact
that publishers often use their own metadata schemas and
representations. For example, a user may find it difficult to
search across multiple engines since they use different struc-
tures and interfaces to present results.

We build on meta-metadata [10] as a structural basis for
obtaining and using interoperable metadata semantics in
applications across system boundaries. Meta-metadata is
an open source, cross-platform formal language, architec-
ture, and wrapper repository addressing metadata struc-
ture, extraction, translation, bridging, and presentation [8].
The heart of meta-metadata is a type system for informa-

tion sources, each published with a consistent DOM struc-
ture and addressing scheme. With meta-metadata, devel-
opers author wrappers to represent metadata vocabularies
and structures, information source selectors to automati-
cally select wrappers, rules to extract metadata into pro-
gram objects, and semantic actions to connect metadata
with business logic. Meta-metadata does not impose par-
ticular schemas on metadata-consuming applications, allow-
ing for flexibility. It comes with a repository of inheritable
wrappers, encouraging re-use across contexts.

This paper develops a use case that derives interoperable
metadata semantics to integrate results from multiple search
engines. We show how meta-metadata helps developers in-
voke and re-use interoperable metadata semantics.

2. PRIOR WORK
Standard metadata schemas, such as Dublin Core [14],

were developed to capture common needs for interopera-
ble metadata semantics across systems. Metadata semantics
that use the same standard schema are directly interoper-
able, since no structural or vocabular ambiguities prevent
unified processing. Sometimes data represented with one
schema can be translated to a more standard one by associ-
ating synonymous fields across schemas, achieving interop-
erability. For example, the Library of Congress developed a
crosswalk between Dublin Core and MARC [11].

However, as the ecosystem of needs and tasks grows in
complexity, the pure standards approach to metadata is in-
adequate. Diverse metadata is a fact of life. It is impos-

sible for standards to keep up or attain sufficient flexibil-
ity. The cost of creating translations is high. In contrast,
meta-metadata does not rely on external standard metadata
schemas. Instead, it allows developers to extend existing
schemas, or start anew, according to their needs.

The Semantic Web [4] approaches interoperable metadata
semantics with ontology alignment [1] and practice guide-
lines like Linked Data [3]. An ontology is a set of related
metadata schemas (i.e. classes) and instances (i.e. resources)
described by formal semantics, typically represented as a
triple store (e.g. RDF or N3). A triple consists of a sub-
ject, predicate, and object. Any relationship between any
pair of objects can be described. Ontology alignments map
classes, fields and resources from one ontology to equivalents
in another, resolving ambiguities. Linked Data identifies re-
sources by URIs. Related resources in the same or other
systems are bi-directionally linked using formal semantics.

Semantic Web triples constitute a general solution for re-
solving ambiguities. However, the situated and evolving na-
ture of knowledge makes formal semantics costly to create
and maintain [12]. In practice, they can involve extensive de-
velopment of source specific “mediators” and optimizations
[5]. As a result, The Semantic Web’s availability and scal-
ability are limited. Again, meta-metadata does not rely on
rigid formal semantics from publishers. It allows developers
to author schemas based on their own situated contexts, and
use wrappers to automatically extract metadata semantics
from informal representations into schematized structures.

Like meta-metadata, Piggy Bank [6] addresses scraping
metadata into structured forms. It has been used to support
Exhibit [7], a structured data presentation framework. The
resulting system facilitates document publishing. One im-
portant difference between Piggy Bank / Exhibit and meta-
metadata is that meta-metadata provides an object-oriented
type system for wrappers. This helps reduce the effort of
authoring domain models and extraction rules. Wrappers
authored by independent developers can be re-used with in-
heritance and polymorphism, propagating interoperability
across contexts.

3. INTEGRATING SEARCH ENGINES
Developers and power users authormeta-metadata wrap-

pers to specify metadata structures, extraction rules, opera-
tions, and presentation rules. The following wrapper (abbre-
viated for space) specifies a metadata schema search with
a collection of search_results inside, as well as semantic
actions (which we will talk about soon):

<meta_metadata name="search" extends="compound_document">
<collection name="search_results" child_type="search_result"/>

<semantic_actions>
<get_field name="search_results" />

<for_each collection="search_results" as="search_result">
<get_field object="search_result" name="link" />

<parse_document now="true">
<arg name="location" value="link" />

</parse_document>

</for_each>
</semantic_actions>

</meta_metadata>

while search_result is defined in another wrapper, con-
sisting of properties (or fields) commonly seen in search re-
sults:

<meta_metadata name="search_result" extends="metadata">

<scalar name="heading" scalar_type="String"
navigates_to="link" layer="10.0" />

<scalar name="snippet" scalar_type="String" />

<scalar name="link" scalar_type="ParsedURL" />
...

</meta_metadata>

In the above samples, attribute extends indicates inheri-
tance, as the reserved word “extends” does in Java. Wrap-
pers compound_document and metadata are primitive struc-
tures defined by the system. Wrapper search will inherit
fields and attributes from compound_document. Wrapper
innheritance represents an is-a relationship, which means
support for polymorphism. For example, in a semantic ac-
tion where search is expected, using a google_search is
permissible. By inheritance and polymorphism, different
metadata schemas can be translated into a consistent repre-
sentation containing common fields, e.g. google_search and
slashdot_search (which we will define later) being used as
search, reconciling schematic differences. Meta-metadata
maintains implicit mappings between fields initially defined
in the base wrapper and inherited in derived wrappers for
polymorphism and translation of schemas.

Attributes navigates_to and layer define presentation

rules. The former makes a field navigable, using another
field as the underlying target (link in the above sample); the
latter indicates visual priority, to sort fields for presentation.
Other supported presentation rules include hiding a field, or
emphasizing it with a style.

The example specifies a group of semantic actions in wrap-
per search. These are inherited by derived wrappers that
do not override and define their own. Semantic actions can
include variable definitions, control structures, and bridge
functions that connect metadata with applications. The se-
mantic actions here take the collection of search_results
and iterate over each, forming and parsing document objects
with parse_document, with the potential to derive further
semantics. Semantic actions form a high-level abstraction of
afforded operations, re-usable across applications and plat-
forms. Developers extend or re-define bridge functions by
simply overriding corresponding methods.

To attach extraction rules, we derive a new wrapper from
search for Google Search:

<meta_metadata name="google_search"
type="search" parser="xpath">

<selector url_stripped="http://www.google.com/search" />
<collection name="search_results"

xpath="//div[@id=’res’]//div//ol//li[@*]" />

<scalar name="heading" xpath=".//h3/a" />
<scalar name="snippet" xpath=".//div[@class=’s’]" />

<scalar name="link" xpath=".//h3/a/@href" />
</collection>

</meta_metadata>

We use type to re-use an existing wrapper without defin-
ing new fields. We refer to fields defined in the base wrap-
per by name, e.g. search_results and heading, to attach
extraction rules. Currently supported extraction rules in-
clude XPath and regular expressions, and direct binding
of XML or JSON to objects through the S.IM.PL (Sup-
port for Information Mapping in Programming Languages)
de/serialization engine [13]. Relative XPaths are supported
inside nested structures, as shown for heading, snippet and
link. Selectors specify the URL pattern or MIME type for
a particular source, which the runtime uses to find an ap-
propriate wrapper given a location and mime type.

We define similar wrappers for other publishers’ search
engines, including Yahoo Buzz, Bing, Slashdot, Delicious,
and Tumblr (some wrappers and XPaths are omitted for
space):

<meta_metadata name="yahoo_buzz_search"

type="search" parser="xpath">
<selector url_path_tree="http://buzz.yahoo.com/search"/>
<collection name="search_results" xpath="//div...//dl">

<scalar name="heading" xpath="./dt/a" />
<scalar name="snippet" xpath="./dd[...]/a" />

<scalar name="link" xpath="./dt/a/@href" />
</collection>

</meta_metadata>

<meta_metadata name="bing_search_xpath"

type="search" parser="xpath">
<selector url_stripped="http://www.bing.com/search" />
<collection name="search_results" xpath="//div.../ul/li[*]">

<scalar name="heading" xpath=".//h3/a" />
<scalar name="snippet" xpath=".//div[@class=’sa_cc’]/p" />

<scalar name="link" xpath=".//h3/a/@href" />
</collection>

</meta_metadata>

<meta_metadata name="slashdot_search"

type="search" parser="xpath">
<selector url_stripped="http://slashdot.org/index2.pl" />
<collection name="search_results" xpath="//div...">

<scalar name="heading" xpath=".//a" />
<scalar name="link" xpath=".//a/@href" />

<scalar name="snippet" xpath="..." />
<scalar name="author" xpath="..." />
<collection name="tags" xpath="...">

<scalar name="tag_name" xpath="." />
<scalar name="link" xpath="./@href" />

</collection>
</collection>

</meta_metadata>

Themeta-metadata compiler automatically translates wrap-
per specifications into metadata classes, in the form of
Abstract Data Types in target programming languages, in-
cluding Java, C#, and Objective C. A metadata class serves
as a mapping between an information source and its internal
representation in program. The resulting metadata classes
in Java for wrapper search and search_result are:

When search requests are processed at runtime, the cor-
rect Search subclass and associated meta-metadata will be
selected. Wrapper google_search and others that specify
type="search" will be mapped to the data structure of Java
class Search. Wrappers extending search will be mapped
to the appropriate metadata subclasses extending Java class
Search. Instances will be constructed and populated. Se-
mantic actions will be invoked.

S.IM.PL annotations generated by the meta-metadata com-
piler (see above) enable de/serialization of metadata objects
from / to XML or JSON for storage and communication. For
example, here results from a Google Search are serialized:

Using these wrappers, we wrote a Java program in less
than 50 statements to mix search results from the engines
with meta-metadata and present the results (Figure 1). It
takes a query as input, uses meta-metadata to make requests
to the search engines. All resulting metadata objects are of
Java class Search, allowing the program to simply iterate
over the collection field search_results to mix search re-
sults. The program then uses the meta-metadata runtime’s

@simpl_inherit public class Search extends CompoundDocument

{
@simpl_collection("search_result")
private ArrayList<SearchResult> searchResults;

...
}

@simpl_inherit public class SearchResult extends Metadata

{
@simpl_scalar private MetadataString heading;
@simpl_scalar private MetadataString snippet;

@simpl_scalar private MetadataParsedURL link;
...

}

<search mm_name="google_search"
location="http://www.google.com/search?q=japan+earthquake">

<search_result heading="BBC News - Japan earthquake"
snippet="Japan quake relief budget passed ..."

link="http://www.bbc.co.uk/news/world-asia-pacific-12711226">
</search_result>

<search_result heading="Japan Quake Map"
snippet="Time-lapse visualisation of the March 11, 2011 ..."

link="http://www.japanquakemap.com/">
</search_result>

<search_result heading="Powerful Quake and Tsunami ..."
snippet="Mar 11, 2011 ... Japan was filled with ..."

link="http://www.nytimes.com/2011/03/12/world/asia/...">
</search_result>

<search_result heading="Japan Earthquake: New Explosion ..."
snippet="Mar 13, 2011 ... A hydrogen explosion reportedly ..."

link="http://abcnews.go.com/International/japan-earthqua...">
</search_result>

<search_result heading="Widespread destruction from Japan ..."
snippet="Mar 11, 2011 ... The morning after Japan was ..."

link="http://articles.cnn.com/2011-03-11/world/japan.qua...">
</search_result>

...
</search>

built-in DHTML rendering capabilities to present the re-
ranked integrated results to the user. The support for poly-
morphism preserves specialized fields such as“tags” and“au-
thor” from Slashdot in the integrated results. The program
and results, along with other examples, are avaiable online
[8].

4. CONCLUSION AND FUTURE WORK
Meta-metadata functions as a basis for interoperable meta-

data semantics for developing applications connecting pub-
lished information sources, metadata schemas, and users.
Meta-metadata wrappers integrate metadata structure, ex-
traction rules, semantic actions, and presentation rules. The
meta-metadata runtime automates the process of structurally
extracting, translating, and connecting metadata semantics
to applications, supporting software development. Inheri-
tance and polymorphism encourage re-use of the repository
and sharing of wrappers, transferring interoperability across
time and space.

Meta-metadata has been used to develop a variety of ap-
plications using metadata semantics. There are presently
wrappers for digital libraries, products, restaurant reviews,
and social media, including Google Books, the ACM Portal,
Amazon, Urbanspoon, Wikipedia, and Flickr. One student
uses it to integrate RSS feeds in a novel interface. Another
uses it to scrape artwork data with semantics from a mu-
seum web site for an exhibition planning tool. Our creativ-

Figure 1: Meta-search for ”japan earthquake”, from

Google, Bing, Yahoo Buzz and Slashdot. Note that

specialized fields such as “tags” and “author” from

Slashdot are preserved.

ity support tool, combinFormation [9], uses meta-metadata
to operate on and present rich semantics to users amidst a
holistic visual information presentation.

We envision meta-metadata as a foundation for building
applications operating on metadata semantics from one or
many sources. As it builds on common mechanisms like
HTTP and XPath, and does not impose rigid external se-
mantics, any template-based web site or collection can be
wrapped and turned into a situated source of metadata se-
mantics, making semantics immediately available and usable
without waiting for publishers to adopt semantic web stan-
dards. Thus, meta-metadata translates the wild web into
an ecosystem of interoperable semantic information. The
repository allows sharing and re-use of metadata schemas
/ wrappers for each source. The runtime hides the com-
plexity of handling network connections, extracting meta-
data semantics, and connecting to applications. As a result,
applications that need metadata semantics buried in XML
or HTML documents on the web, especially those that in-
tegrate multiple sources, can benefit from meta-metadata.
These include browsing and searching applications [15] that

use metadata fields as facets, bibliography management tools
that support citation chaining and berry picking [2], plan-
ning assistants that depend on rich metadata semantics (e.g.
weather, schedules, locations, etc.), and visualizations that
use metadata semantics to convey stories.

In the future, we will work on connecting meta-metadata
with other standards and systems such as the Semantic Web,
Linked Data, and Exhibit, to extend its applicability. We
will continuously extend the expressiveness of the meta-
metadata language based on emerging needs and use cases.
We seek collaborations with developers, curators, and pub-
lishers to enhance future derivation of metadata semantics
to make good use of the world’s information resources.

5. REFERENCES
[1] G. Antoniou and F. van Harmelen. A Semantic Web

Primer. The MIT Press, 2004.

[2] M. Bates. The design of browsing and berrypicking
techniques for the online search interface. Online

Information Review, 13:407–424, 1993.

[3] T. Berners-Lee. Linked data. International Journal on
Semantic Web and Information Systems, 4, 2006.

[4] T. Berners-Lee et al. The semantic web. Scientific
American, 284:34–43, 2001.

[5] H. Glaser et al. CS AKTive Space: building a
semantic web application. In Proc. of ESWS, pages
417–432. Springer Verlag, 2004.

[6] D. Huynh et al. Piggy bank: Experience the semantic
web inside your web browser. Proc. of ISWC, 2005.

[7] D. Huynh et al. Exhibit: lightweight structured data
publishing. In Proc. of WWW, 2007.

[8] Interface Ecology Lab. Meta-Metadata Guide.
http://ecologylab.net/research/simplGuide/

metaMetadata/index.html.

[9] A. Kerne et al. combinformation: Mixed-initiative
composition of image and text surrogates promotes
information discovery. ACM TOIS, 27:5:1–5:45, 2008.

[10] A. Kerne et al. Meta-metadata: a metadata semantics
language for collection representation applications. In
Proc. of CIKM, 2010.

[11] Library of Congress. Dublin Core/MARC/GILS
crosswalk. http://www.loc.gov/marc/dccross.html,
2008.

[12] C. C. Marshall and F. M. Shipman. Which semantic
web? In Proc. of HYPERTEXT, 2003.

[13] N. Shahzad. S.IM.PL serialization: Translation scopes
encapsulate cross-platform, multi-format information
binding. Master’s thesis, Texas A&M University, 2011.

[14] S. Weibel et al. RFC 2413: Dublin core metadata for
resource discovery. RFC, 1998.

[15] K.-P. Yee et al. Faceted metadata for image search
and browsing. In Proc. of SIGCHI, 2003.

